Stability criteria for conjugate points of indefinite second order differential systems

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the stability of linear differential equations of second order

The aim of this paper is to investigate the Hyers-Ulam stability of the  linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$  $fin C[a,b]$ and $-infty

متن کامل

SOME RESULTS FOR SOLUTION AND FOCAL POINTS OF NONSELFADJOINT SECOND ORDER SYSTEMS

Consider y" (t) + A (t)y (t) + 0, y is a real n-dimensinal vector and A(t) is a real nxn matrix, continuous on some interval. Some positivity properties of solutions and conjugate points of y"(t) + A(t)y (t) = 0 appeared in literature. We prove similar results for focal points

متن کامل

Stability of Second-order Differential Inclusions

For an arbitrary second-order stable matrix A, we calculate the maximum positive value R for which the differential inclusion ẋ ∈ FR(x) := {(A +∆)x,∆ ∈ R2×2, ‖∆‖ ≤ R} is asymptotically stable.

متن کامل

Oscillation Criteria for Nonlinear Delay Differential Equations of Second Order∗

We prove oscillation theorems for the nonlinear delay differential equation

متن کامل

On Fuzzy Solution for Exact Second Order Fuzzy Differential Equation

In the present paper, the analytical solution for an exact second order fuzzy initial value problem under generalized Hukuhara differentiability is obtained. First the solution of first order linear fuzzy differential equation under generalized Hukuhara differentiability is investigated using integration factor methods in two cases. The second based on the type of generalized Hukuhara different...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1986

ISSN: 0022-247X

DOI: 10.1016/0022-247x(86)90031-4